Regulation and Function of Runx2 During Chondrogenic and Osteogenic Differentiation: a Dissertation

نویسندگان

  • Christopher J. Lengner
  • Christopher Joachim Lengner
  • Stephen N. Jones
  • Zheng-Zheng Bao
  • Louis C. Gerstenfeld
  • Jane B. Lian
چکیده

Members of the Runx family of transcription factors play essential roles in the differentiation and development of several organ systems. Here we address the contribution of the osteoblast-related Runx gene Runx2 to the osteogenic and chondrogenic differentiation of mesenchymal stem cells. Using a transgenic mouse model, we observe Runx2 transcription through one of its two known promoters (designated PI in pre-carilaginous mesenchymal condensations as early as E9. 5. Runx2 gene activity is later repressed at the onset of cartilage formation, both in vivo and vitro necessitating examination of the regulation and fuction of Runx2 in mesenchymal stem cells. We demonstrate that Runx2 gene activity is repressed by the direct interaction of the homeodomain transcription factor Nkx3.2 with the proximal Runx2 PI promoter. This repression was found to be required for the progression of BMP-induced chondrogenesis, thereby identifying Runx2 as a modulator of BMP activity in the chondrogenic as well as osteogenic differentiation program. To further understand the regulation of the Runx2 PI promoter and to determine the contribution of PI-derived gene product, Runx2 Type II , to the formation of mineralized tissue, we have generated a Runx2 Type IILacZ gene replacement mouse model in which the initial coding sequences and splice donor sites of the Type II isoform are replaced with the LacZ reporter gene. Activity of the endogenous PI promoter can therefore be monitored by (3galactosidase production. Analysis of Runx2 Type II-LacZ mice demonstrates that the PI promoter is transcriptionally most active in mature osteoblasts, but its product, Runx2 Type II is dispensable for embryonic skeletal formation. Lastly, we examine the link between growth control and osteogenic differentiation by tissue-specific deletion of the Mdm2 proto-oncogene in developing skeletal tissues of the mouse embryo. Loss of Mdm2 results in impaired bone formation, with skeletal elements exhibiting lower bone mineral content and higher porosity. Ex vivo cultures of calvarial osteoprogenitor cells exhibit severely decreased osteoblastogenesis and bone nodule formation accompanied by a failure to activate Runx2 gene activity. These findings suggest that Mdm2 is required for inhibition of p53 activity that ultimately allows for post-confluent proliferation and induction of Runx2 during maturation of the osteogenic phenotype. Taken together, our findings suggest that Runx2 modulates the commitment of progenitor cells to the osteogenic and chondrogenic lineages, and that Run2 activity is inextricably linked to mechanisms that control cellular proliferation.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

مقایسه بیان کمّی فاکتور نسخه‌برداری RUNX2 در تمایز سلول‌های بنیادی مزانشیمی با محیط تمایزی استئوبلاستی و داروی زولدرونیک اسید

  Background and Objectives : RUNX2 is the most specific transcription factor in osteoblastic differentiation of MSCs. In this research, RUNX2 expression was quantified in MSCs differentiated by osteogenic differentiation medium (ODM) and zoledronic acid (ZA).   Materials and Methods: In this experimental study, hMSCs were treated by osteogenic differentiation medium and ZA. RNA extraction was ...

متن کامل

Role of RHEB in Regulating Differentiation Fate of Mesenchymal Stem Cells for Cartilage and Bone Regeneration

Advances in mesenchymal stem cells (MSCs) and cell replacement therapies are promising approaches to treat cartilage and bone defects since substantial differentiation capacities of MSCs match the demands of tissue regeneration. Our understanding of the dynamic process requiring indispensable differentiation of MSCs remains limited. Herein, we describe the role of RHEB (Ras homolog enriched in ...

متن کامل

A program of microRNAs controls osteogenic lineage progression by targeting transcription factor Runx2.

Lineage progression in osteoblasts and chondrocytes is stringently controlled by the cell-fate-determining transcription factor Runx2. In this study, we directly addressed whether microRNAs (miRNAs) can control the osteogenic activity of Runx2 and affect osteoblast maturation. A panel of 11 Runx2-targeting miRNAs (miR-23a, miR-30c, miR-34c, miR-133a, miR-135a, miR-137, miR-204, miR-205, miR-217...

متن کامل

New Insights into Osteogenic and Chondrogenic Differentiation of Human Bone Marrow Mesenchymal Stem Cells and Their Potential Clinical Applications for Bone Regeneration in Pediatric Orthopaedics

Human mesenchymal stem cells (hMSCs) are pluripotent adult stem cells capable of being differentiated into osteoblasts, adipocytes, and chondrocytes. The osteogenic differentiation of hMSCs is regulated either by systemic hormones or by local growth factors able to induce specific intracellular signal pathways that modify the expression and activity of several transcription factors. Runt-relate...

متن کامل

Mechanically induced osteogenic differentiation--the role of RhoA, ROCKII and cytoskeletal dynamics.

Many biochemical factors regulating progenitor cell differentiation have been examined in detail; however, the role of the local mechanical environment on stem cell fate has only recently been investigated. In this study, we examined whether oscillatory fluid flow, an exogenous mechanical signal within bone, regulates osteogenic, adipogenic or chondrogenic differentiation of C3H10T1/2 murine me...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015